

**COURSE SYLLABUS** 

| Course Title         | Course<br>Code       | Semester   Course Hour/Week   Credit |                                | ECTS                   |                                          |       |  |
|----------------------|----------------------|--------------------------------------|--------------------------------|------------------------|------------------------------------------|-------|--|
| Discrete Mathematics | GAME103              | 1                                    | Theory 3                       | Practice 0             | 3                                        | 5     |  |
| Course Type          | Compulsory<br>Course | Department<br>Elective               | Faculty<br>Elective            | University<br>Elective | CoHE<br>(YÖK)<br>Elective                | Other |  |
|                      | X                    | -                                    | -                              | -                      | -                                        | -     |  |
| Level of Course      | Associate<br>(Short  |                                      | Undergraduate<br>(First Cycle) |                        | Graduate/ Doctora<br>(Second /Third Cycl |       |  |
|                      | -                    |                                      |                                | X                      | -                                        |       |  |

| Language of Instruction | English |
|-------------------------|---------|
|-------------------------|---------|

| Course Instructor(s)        | Vic Grout                                                                                                                                                        | E-mail: vic.grout@arucad.edu.tr  Office: TI OFF 18                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Course Objectives           | consequentially of programming and g<br>to work in many fields including data<br>engineering. In this course, students<br>representation, propositional and symb | Mathematics is the language of Computer Science, and atially of programming and game writing. One needs to be fluent in it is many fields including data science, machine learning, and software ag. In this course, students will explore basic number theory and tion, propositional and symbolic logic, sets and relations, sequences, algorithms, matrices, combinatorics, and probability theory in games. |                       |  |  |  |  |
|                             | Students will able to:                                                                                                                                           | Teaching<br>Methods                                                                                                                                                                                                                                                                                                                                                                                             | Evaluation<br>Methods |  |  |  |  |
|                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |  |  |  |  |
| Course Learning             | Define and describe essential discrete mathematics principles                                                                                                    | Class material and discussion                                                                                                                                                                                                                                                                                                                                                                                   | Midterm<br>assignment |  |  |  |  |
| Course Learning<br>Outcomes |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 | assignment            |  |  |  |  |



|                | l collifions in the field of video game                                                                                                                                                                                                                                                                 | Class material and discussion | Final exam |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| Course Content | <ul> <li>Numbers and numerical represer</li> <li>Set theory</li> <li>Relations</li> <li>Functions and algorithms</li> <li>Logic and propositional calculus</li> <li>Permutations and combinations</li> <li>Graph theory</li> <li>Vectors and matrices</li> <li>Geometry</li> <li>Probability</li> </ul> |                               |            |

|                                                                                       | COURSE OUTLINE/SCHEDULE                                                 |   |                                                                                        |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------|--|--|--|--|--|
| Week Topic Implementation (theory/practice) Required Reading, Preliminary preparation |                                                                         |   |                                                                                        |  |  |  |  |  |
| 1                                                                                     | Introduction: Course structure.<br>Numbers and how to represent<br>them | Т | Class notes.                                                                           |  |  |  |  |  |
| 2                                                                                     | Number bases and representation. Mathematical relationships             | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'       |  |  |  |  |  |
| 3                                                                                     | Algebra and equations                                                   | Т | Class notes                                                                            |  |  |  |  |  |
| 4                                                                                     | Mathematical functions                                                  | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'       |  |  |  |  |  |
| 5                                                                                     | Introduction to algorithms                                              | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'       |  |  |  |  |  |
| 6                                                                                     | Set theory and practice                                                 | T | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'       |  |  |  |  |  |
| 7                                                                                     | Propositional logic Midterm Exam                                        | Т | Class notes.<br>Hugh Neill & Trevor Johnson,<br>'Mathematics: a complete introduction' |  |  |  |  |  |
| 8                                                                                     | Boolean Algebra                                                         | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'       |  |  |  |  |  |



| 9  | Permutations and combinations | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'    |
|----|-------------------------------|---|-------------------------------------------------------------------------------------|
| 10 | Probability for games         | Т | Class notes.<br>Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction' |
| 11 | Graph theory and practice     | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'    |
| 12 | Vectors                       | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'    |
| 13 | Matrices                      | Т | Class notes. Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction'    |
| 14 | Game geometry                 | Т | Class notes.                                                                        |
| 15 | Game algorithms               | Т | Class notes.                                                                        |
| 16 | Maths workshop                | Т | Class notes.                                                                        |
| 17 | Finals                        |   |                                                                                     |

| Required Course<br>Material(s) / Reading(s)/<br>Text Book(s) | Hugh Neill & Trevor Johnson, 'Mathematics: a complete introduction', JML, 2018, ISBN: 1473678374 9781473678378, ARUCAD Library QA39.3 .N44 2018 |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | Stephen Ornes, 'Math Art: Truth, Beauty and Equations', 2019, ISBN: 9781454930440, ARUCAD Library N72.M3 O76 2019                               |
| Recommended Course                                           | 3rd level Maths - BBC Bitesize:<br>https://www.bbc.co.uk/bitesize/subjects/zfcqn39                                                              |
| Material(s)/ Reading(s) /Other                               | Wolfram MathWorld: The Web's Most Extensive Mathematics Resource: https://mathworld.wolfram.com/                                                |
|                                                              | Wolfram Alpha Examples: Mathematics (wolframalpha.com): https://www.wolframalpha.com/examples/mathematics                                       |



| ASSESSMENT                                           |        |             |  |  |  |  |
|------------------------------------------------------|--------|-------------|--|--|--|--|
| Learning Activities                                  | NUMBER | WEIGHT in % |  |  |  |  |
| Mid-Term assignment                                  | 1      | 40          |  |  |  |  |
| Quiz                                                 |        |             |  |  |  |  |
| Assignment                                           |        |             |  |  |  |  |
| Project                                              |        |             |  |  |  |  |
| Field Study                                          |        |             |  |  |  |  |
| Presentation / Seminar                               |        |             |  |  |  |  |
| Studio Practice                                      |        |             |  |  |  |  |
| Other                                                |        |             |  |  |  |  |
| Contribution of Final Examination to the Final Grade | 1      | 60          |  |  |  |  |
| TOTAL                                                |        | 100         |  |  |  |  |

|    | CONTRIBUTION OF COURSE LEARNING OUTCOMES TO PROGRAMME LEARNING OUTCOMES                                                                           |   |   |                                                        |   |   |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------------------------------------------------|---|---|--|--|
| No |                                                                                                                                                   |   |   | Level of<br>Contribution (1-<br>lowest/ 5-<br>highest) |   |   |  |  |
|    |                                                                                                                                                   | 1 | 2 | 3                                                      | 4 | 5 |  |  |
| 1  | Knows the historical development of the field of communication, basic concepts, theories.                                                         |   | X |                                                        |   |   |  |  |
| 2  | Knows the basic concepts and terminology related to the field of game design.                                                                     |   |   |                                                        | X |   |  |  |
| 3  | Has knowledge about the history of computer and video games and developments in this field.                                                       |   |   | X                                                      |   |   |  |  |
| 4  | Knows game design processes and related applications.                                                                                             |   | X |                                                        |   |   |  |  |
| 5  | Has the ability to utilize various disciplines such as communication, art, music, psychology, mythology, cinema, etc. in the game design process. |   | X |                                                        |   |   |  |  |
| 6  | Has the ability to analyse analog and digital game genres.                                                                                        |   | X |                                                        |   |   |  |  |
| 7  | Has the ability to use contemporary game engines and problem solving skills.                                                                      | X |   |                                                        |   |   |  |  |



| 8  | Has the knowledge of questioning the game designs with an analytic and critical perspective.                                                                                     |   |   | X |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|
| 9  | Has knowledge about media literacy.                                                                                                                                              |   |   | X |  |
| 10 | Has the competence to prepare projects based on ethical principles in game development processes.                                                                                | X |   |   |  |
| 11 | Has the competence to evaluate games as an art form.                                                                                                                             | X |   |   |  |
| 12 | Has the competence to use game design concepts and methods in related fields such as design, software development and media.                                                     | X |   |   |  |
| 13 | Has the competence to take part and responsibility in game development teams.                                                                                                    |   | X |   |  |
| 14 | Has the competence to collect, analyze and interpret analytical data about games and players.                                                                                    |   | X |   |  |
| 15 | Has the competence to develop and present a digital game project by using game design practices effectively.                                                                     | X |   |   |  |
| 16 | Evaluates artificial intelligence applications in their studies with a critical approach in terms of aesthetics and originality, and uses them in accordance with ethical rules. | X |   |   |  |

| ECTS / STUDENT WORKLOAD                              |        |      |      |                     |  |  |  |  |
|------------------------------------------------------|--------|------|------|---------------------|--|--|--|--|
| ACTIVITIES                                           | NUMBER | UNIT | HOUR | TOTAL<br>(WORKLOAD) |  |  |  |  |
| Course Teaching Hours (X weeks * total course hours) | 15     |      | 3    | 45                  |  |  |  |  |
| Preliminary Preparation and self- study              | 15     |      | 2    | 30                  |  |  |  |  |
| Mid-Term Exam (including revision)                   | 1      |      | 20   | 20                  |  |  |  |  |
| Quiz                                                 | -      |      | -    | -                   |  |  |  |  |
| Assignment                                           | -      |      | -    | -                   |  |  |  |  |
| Project                                              | -      |      | -    | -                   |  |  |  |  |
| Field Study                                          | -      |      | -    | -                   |  |  |  |  |
| Presentation / Seminar                               | -      |      | -    | -                   |  |  |  |  |
| Studio Practice                                      | -      |      | -    | -                   |  |  |  |  |
| Final Examination/ Final Project/ Dissertation       | 1      |      | 30   | 30                  |  |  |  |  |
| Other                                                | -      |      | -    | -                   |  |  |  |  |
| TOTAL WORKLOAD                                       |        |      |      | 125                 |  |  |  |  |



**COURSE SYLLABUS** 

| TOTAL WORKLOAD / 25 |  | 5 |
|---------------------|--|---|
| ECTS                |  | 5 |

#### ETHICAL RULES WITH REGARD TO THE COURSE

Detected and undetected plagiarism is a serious offence at any time and it could have devastating effects on your degree result and future professional lives. However, plagiarism is easy to avoid if you make sure you identify and acknowledge your sources thoroughly and do not copy directly from visual examples, designs, or notes that have in turn been taken word for word from your sources. The maximum similarity level is 20% in written assignments.

Important Note on Attendance: You must attend at least 70% of the sessions for this course or you will automatically fail. Students cannot be absent more than 30% of the time, *even if you have medical reports* or other forms of justification. Lecturers have no control over this rule: it will be rigorously applied by the system.

#### ASSESSMENT DETAILS AND EVALUATION CRITERIA:

You will be assessed by two components: midterm (40% of the overall course mark) and final (40% of the overall course mark).

The midterm assessment will be a written exam assessing fundamental mathematical and geometric concepts.

The final assessment will be an equal combination of a written exam assessing more advanced mathematical concepts and an exercise book to be completed in class.

Late work can only receive full credit in extreme circumstances and will be penalized otherwise as follows:

Up to an hour late: 5% deducted
Over an hour but less than a day late: 10% deducted
Over a day but less than two days late: 15% deducted
Over two days but less than a week late: 25% deducted
A week or more late: Not accepted: 0%

Final Grades will be determined according to the Course Learning Activities and Final Examination Assessment Details as indicated below, and comply by the Education and Examination Regulation set forth by the University.

| 1 =<br>Tv##v# | SDG 1: No Poverty  |  |
|---------------|--------------------|--|
| 2             | SDG 2: Zero Hunger |  |



| 3 telefic<br>-Ay                        | SDG 3: Good Health and Well-Being              |   |
|-----------------------------------------|------------------------------------------------|---|
| 4 == F.                                 | SDG 4: Quality Education                       | ✓ |
| 5 to:                                   | SDG 5: Gender Equality                         |   |
| <b>E</b>                                | SDG 6: Clean Water and Sanitation              |   |
| 7 <u></u>                               | SDG 7: Affordable and Clean Energy             |   |
| 8 #27#                                  | SDG 8: Decent Work and Economic Growth         |   |
| 9=====<br>                              | SDG 9: Industry, Innovation and Infrastructure |   |
| 10 ****                                 | SDG 10: Reduced Inequalities                   |   |
| 1100000                                 | SDG 11: Sustainable Cities and Communities     |   |
| CO                                      | SDG 12: Responsible Consumption and Production |   |
| 13 22                                   | SDG 13: Climate Action                         |   |
| 14 2                                    | SDG 14: Life Below Water                       |   |
| 15 mm                                   | SDG 15: Life on Land                           |   |
| 16                                      | SDG 16:Peace, Justice and Strong Institutions  |   |
| 17 ************************************ | SDG 17:Partnership for the Goals               |   |

| PREPARED BY | Vic Grout  |
|-------------|------------|
| UPDATED     | 07/10/2025 |
| APPROVED    |            |